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We present a general definition of damage spreading in a pair of models. Using
this general framework, one can define damage spreading in an objective
manner that does not depend on the particular dynamic procedure that is being
used. The formalism can be used for any spin-model or cellular automaton, with
sequential or parallel update rules. At this point we present its application to the
Domany-Kinzel cellular automaton in one dimension, this being the simplest
model in which damage spreading has been found and studied extensively. We
show that the active phase of this model consists of three subphases charac-
terized by different damage-spreading properties.
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1. INTRODUCTION

The concept of damage spreading was introduced in the context of biologi-
cally motivated dynamical systems by Stuart Kauffman.(1) The question
posed is whether the phase-space trajectories of two slightly different copies
of a dynamic system, subjected to the same thermal noise, will stay close
(or even merge) at long times or, alternatively, will they diverge?4 Damage
spreading (DS) made its first appearance in the physics literature in the
mid eighties,'2'3'4) and attracted considerable interest and attention. The
main reason behind this initial enthusiasm was the hope that damage
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may spread (indicating chaotic behavior) in some regions of a system's
parameter space and disappear or heal elsewhere. This possibility intrigued
researchers, since if indeed realized, it would have indicated the existence
of different dynamic phases in various complex systems (such as spin-
glasses).(4) The initial enthusiasm concerning damage spreading has abated
during subsequent years; the main reason being an apparent lack of an
objective, observer-independent measure of whether damage does or does
not spread in a given system. Even for relatively simple models, such as the
two dimensional ferromagnetic Ising model, different results were obtained
when heat bath or Metropolis dynamics were used.(5'6) Both these dynamic
procedures are phenomenological (since they satisfy detailed balance, they
can be used to generate equilibrium ensembles) and the two are equally
legitimate to mimic the temporal evolution of a system in contact with a
thermal reservoir. If spreading or healing of damage were to indicate some
intrinsic property of the system, one would not expect the result to depend
on the details of exactly which phenomenological procedure was used to
generate its dynamics.

The purpose of this communication is to pose the "right" question; i.e.
one which has a well defined objective answer. The essence of the argument
is to consider the entire family of dynamic procedures that are consistent
with the physically dictated constraints of the problem. For any particular
system one of three possibilities may hold:

1. Damage is spreading for every member of the family of dynamic
procedures

2. Damage heals for every member of this family
3. Damage spreads for a subset of the possible dynamic procedures,

and heals for the complementing subset.

Hence the only question regarding damage spreading that has an unam-
biguous, observer-independent answer is: to which of these three classes a
particular system belongs?

To demonstrate the general concept introduced here we studied the
simplest dynamic model in which damage spreading has been observed, the
one-dimensional Domany-Kinzel (DK) cellular automaton,(8) for which
we found the phase diagram presented in Fig. 1. Note that for technical
reasons discussed below we postponed discussion of DS in the Ising model
to a future publication.(7)

The DK automaton is a two-parameter model whose temporal evolu-
tion contains, as special cases, the bond and site directed percolation
problems. The main point made by DK was universality: namely, that the
entire family of observed transitions of the one-dimensional cellular
automaton is in the directed percolation universality class, (except a special
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Fig. 1. Phase diagram of the Domany-Kinzel automaton. The active, percolating phase
consists of three subphases; each is numbered according to the damage spreading class to
which it belongs (see text).

point, for which an exact solution was presented). DK identified two
phases; a "dry" or "frozen" phase, in which all initial conditions evolve to
the absorbing state, and an "active" or percolating phase. Some years later
Martins et al.(9) discovered that in a certain region of the active phase
damage spreads, and it heals elsewhere. More detailed investigations, using
simulations(10-13) as well as analytic (mean field) approximations(12,14-16)
confirmed the existence of this "chaotic phase." Its boundary, however, was
shown(14,15) to depend on the manner in which the dynamic procedure of
the underlying DK model is carried out, while the evolution of a single
replica is completely insensitive to the dynamic procedure. This prompted
Grassberger(13) to observe that "it is misleading to speak of different phases
in the DK automaton...instead these are different phases for very specific
algorithms for simulating pairs of such automata." This observation is the
precise analog of the problematic nature of viewing DS as a manifestation
of a dynamic transition in spin models, where, as mentioned above, it was
well known that different dynamics that yield identical equilibrium proper-
ties can give rise to different results for damage spreading. Thus, again, DS
becomes a "subjective" concept, which is devoid of well defined meaning
for the DK model, whose phases should be determined by the properties
of a single evolving system.

The main purpose of this paper is to point out that if one defines the
most general family of dynamic rules that are consistent with the physics



of the problem being studied (Sec. II), DS has an objective, observer-
independent meaning. Past work on DS in the DK model is reviewed in
Sec. Ill and in Sec. IV the existence of the three well defined distinct phases
described in the Introduction is established for the DK model by numerical
simulations and analytical arguments.

We also tested and confirmed a recent conjecture of Grassberger, to
the effect that the damage spreading transition is in the directed percolation
universality class.(13) Analytical support for this conjecture came so far
from approximate mean-field arguments(15) and an exact statement first
made by Kohring and Schreckenberg,(14) who noted that on the p2 = 0 line
the dynamics of damage spreading in the DK automaton is precisely identi-
cal to the evolution of the DK automaton itself, and hence on this line DS
is trivially in the DP universality class. This being a rather special line, it
is of interest to try to establish such precise mapping of DS to DP also else-
where in the p1 — p2 plane. In Sec. IV A we present such an extension.

2. RULES FOR LEGITIMATE DAMAGE SPREADING
PROCEDURES

We turn now to present our arguments for the possibility of defining
an observer-independent measurement of damage spreading. By this we do
not mean that DS is reflected in the dynamic behavior of a single system,
so that Grassberger's observation still holds; DS is a property of a pair of
automata.5 It is possible, however, to address the lack of objectivity
implicit in one's freedom to choose the precise algorithm that is used for
the evolution of the pair of replicas. If every observer can pick his favorite
dynamic rule, get results (on DS) that depend on the rule used, while no
measurement done on an evolving single system can differentiate between
the rules—indeed it appears contradictory to claim that DS reflects
"phases" of the model that is being investigated. Nevertheless such phases
can be defined in a precise way.

To overcome this apparent paradox we formulate quite general and
physically motivated restrictions on the possible dynamic rules that one
can use for studying DS. By "physical" we mean that the restrictions are
dictated by the dynamics of the single evolving system. The restrictions are
as follows:

5 In this sense DS, as defined for stochastic dynamics, differs from dynamics in deterministic
nonlinear systems. For deterministic nonlinear systems one can find signatures of chaotic
behavior in following the phase-space trajectory of a single evolving system. Divergence of
two initially neighboring trajectories (indicating the existence of a positive Lyapunov expo-
nent) is a computationally feasible tool to ascertain the chaotic nature of a single system's
trajectory, but it is not essential to consider two replicas in order to define chaos.
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1. The dynamic rules for the evolution of the pair of replicas are such
that the evolution of a single replica is according to its "natural"
dynamics.

2. The transition probability matrix for a site i for the pair of replicas
can depend only on those sites that affect the evolution of site i
under the dynamic rules of a single system.

3. The rules that govern evolution for the pair do not break any of
the symmetries of the single-replica dynamics.

The first restriction simply means that the fact that we are watching two
systems evolving in parallel should not affect the behavior of any one of
them. The second constraint means that if the evolution of site i is affected,
say, only by the states of its nearest neighbors, the relative states taken on
site i by the two replicas should not feel longer range interactions. For
example, if site i and all its neighbors j are in the same state in the two
replicas, we do not expect damage to be generated at i by a damaged site
which is far away (i.e. not one of the neighbors of i). The third rule implies,
for example, that if there is a left-right symmetry in the evolution of a
single system the same must hold for the pair of replicas.

Clearly, the subjectivity in defining the damage spreading procedure
that was described above has now been shifted to this point—to selecting
the restrictions that define which DS procedure is "legitimate." We do
believe that there is much less arbitrariness, however, in this kind of sub-
jectivity than what was done before, choosing, at random, one out of a
continuum of physically equivalent procedures.

3. DAMAGE SPREADING IN THE DK MODEL:
A BRIEF REVIEW

In this section we review briefly past work on damage spreading in the
DK automaton. We emphasize the manner in which DS was calculated by
various authors, and the manner in which different ways of defining DS
can be embedded in a general framework.

The DK automaton is defined as follows: a binary variable a i ( t ) = 0, 1
characterizes the state of site i at (discrete) time t.a=1 means that the site
is wet or active, whereas a = 0 means that it is dry. The automaton evolves
by a stochastic parallel update rule: the probability to obtain a i( t+ 1) = 1
for each binary variable is given by
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That is, the state of site i at time t + 1 depends only on the states of its
two neighbors at time t; only wet sites can give rise to a wet site, with
probabilities p1 if one neighbor was wet and p2 if both were wet. This
model has a dry phase and a wet phase, separated by a transition line
which has been determined with high accuracy by various numerical
methods. In spite of its simplicity, the model has not been solved exactly,
except for the special line p2 = l.(8,17,18) At all points on the phase bound-
ary, except the special line, the transition to the active or wet phase is
characterized by directed percolation (DP) exponents.

In order to describe DS in a more general framework, let us denote by
ra _ a = 0, 1 the binary random variable whose value is assigned to
ff(t+l):

Using this notation, the conditional probability to get oi(t + 1) = 1 can be
expressed as one-point expectation value of the random variable

where < • • • > denotes the average over many independent realizations.
Since r00 = 0, the transition probabilities in the DK model are completely
defined by the one-point expectation values of three random binary
variables(15)

The one-point expectation values of these random variables specify the
evolution of a single system. Correlations between different random
variables do not affect the behavior of a single system since for each update
only one of the three variables is used; if a i _ 1 ( t ) = a,+ , ( t ) = 1, one uses r11,
etc. To study damage spreading, however, we run two replicas of the
system in parallel, using the same random numbers at all sites i and times t.
That is, for each i, t we do generate all three numbers r10,r01,r11, but use,
on each replica, the appropriate one. For example, if the two parents of a
site are (1, 0) on replica A and (1, 1) on B, we use r10 for A and r11 for B.
Hence the temporal evolution of the entire system (and therewith damage
spreading) does depend on correlations between the random variables.
More precisely, the temporal evolution of n replicas is completely specified
by the set of all m-point correlation functions between the random variables
with m < n. In case of the DK model, taking the left-right symmetry into
account, there are three independent correlations between the random
variables:



Since damage spreading between two replicas is controlled by one- and
two-point functions, the parameter y will only affect the way in which three
replicas evolve in parallel.

At this point we can explain why is the DK model so much more con-
venient for demonstrating our point than the one-dimensional Ising model.
The DK model is defined in terms of its dynamic rules alone; since the fate
of site i depends only on the states of its two neighbors, adherence to the
rules 1-3 of Sec. II dictates that the random numbers may depend only on
these two sites; hence the relevant parameter space of the DS problem is
two dimensional and, hence, relatively easy to explore. On the other hand,
the Ising model is defined by its Hamiltonian; any dynamics that satisfy
detailed balance with respect to this Hamiltonian is equally acceptable. In
particular, when updating spin i, one can allow its own state to affect the
dynamics (as is done in the Glauber algorithm). Hence in order to include
all possible algorithms that satisfy the rules for the 1—d Ising model, we
have to allow different random numbers for each of the states of three
spins: the two neighbors and the updated spin itself. The resulting general
DS procedure depends on 14 parameters;(7) exploration of this space would
have obscured the simple point we are making.

Martins et al.(9) were the first to address the issue of damage spreading
in the DK model. Two nearly identical initial configurations were allowed to
evolve on two replicas, using the same random numbers for both (the precise
meaning of this statement will be explained below). They discovered that the
active phase contains in fact two regions; one in which damage spreads
and its complement, where it does not. The boundary between these regions
was subsequently determined with increasing accuracy by Zebende and
Penna,(10) by Martins et al.,(11) Rieger et al.(12) and Grassberger.13) Inde-
pendently, mean-field type approximations of varying complexity were also
used to study the DS problem.(12,14,15,16) The original scheme of Martins et
al used a single uniformly distributed random number 0 < z < 1 for the two
replicas: using the above definitions this means that the choice
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Tome (16) was the first to point out that damage could be introduced in
different ways to the DK model and that the procedures used in Ref. 9
and in Ref. 14 constituted two particular choices. In fact, the dynamics
generated by using on the first replica a,(t+ l) = rCT._ .+| and o',(t+ 1) =
r"',-ia'i+i on the second gave rise(15) to a shift of the original "phase
boundary" (as obtained with a single random number, Eq. (6)). As dis-
cussed in Sec. II, the evolution of a single replica is completely insensitive
to whether one or two random variables are used in the dynamic proce-
dure, which prompted Grassberger(13) to make his observation quoted in
the Introduction.

Finally we note that Grassberger has formulated recently"3' a conjec-
ture, which is a natural extension of previous statementsh(20, 21, 8) regarding
universality of directed percolation transitions for models with non-sym-
metric absorbing states.(22) According to this conjecture damage-spreading
transitions should be in the universality class of directed percolation,(13)
provided some general conditions are satisfied. The DK model is a natural
candidate to test this conjecture because of its simplicity, ease to simulate
and our precise knowledge of the existence of a DS transition and its loca-
tion. Grassberger presented numerical evidence for his conjecture, which

6 The possibility of studying damage spreading with entirely different random numbers on the
two replicas was raised by Glotzer el al.(19) for the Ising model. This notion was never
implemented by them and for a good reason. This work is totally irrelevant to ours; we
thank a nonanonymous referee for calling our attention to it.

the correlations being

Kohring and Schreckenberg recognized the fact that one could, in
principle, use two different random numbers to determine <r,(?+l) and
(?i(t+ 1)', if at least one of the two neighbor sites was damaged6 at time t.
In fact they studied DS using two different random numbers z01 and zn,
their DS procedure has two fully correlated binary variables (r01 and r]0)
and two uncorrelated ones (rm and /-,,):

The dynamical process is generated by setting
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we also confirmed and extended. We also show below that in a region of
the p1, p2 plane one can map DS exactly to the DK model and hence onto
DP. This result is an extension of a statement first made by Kohring and
Schreckenberg,(14) who noted that such a mapping holds on the p2 = 0 line.
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4. TRUE PHASES IN THE DK MODEL

As discussed in Sec. III, the most general dynamic rule that can be
defined for two replicas of the DK automaton, in accordance with these
constraints, has two degrees of freedom or parameters, a and p. As it
turns out (see Appendix A), the possible values that a and p can take are
restricted by requiring that all transition rates have to be positive. For any
value of p1, p2, the range of allowed values of the parameters a and ft is
given by

There are three important special cases, namely those of

• maximal correlations: a = min(/>,, p2), fi = p\

• no correlations: S. = p\p2, P = P2\

• minimal correlations: 5. = p^ p2 — \, /? = 2/?, — 1.

In the case of minimal correlations, the values listed above hold only in the
region 2/?, + p2 > 2 (see Appendix A). Note that the when a single random
number was used the resulting correlations, Eq. (7), take the maximal
possible values.

4.1. Exact Results

We turn now to show that for p2/2^p{ < 1 — p2/2 the damage
spreading process can be mapped exactly onto a directed percolation pro-
cess. Kohring and Schreckenberg'I4) have shown that such a mapping
holds on the line p2 = 0. Clearly, their choice of parameters (10) is a
particular case of our damage spreading procedure, which is the most
general one that satisfies rules 1-3 listed above. Therefore we find a wider
(two-dimensional) region in the p\,p2 plane in which such a mapping
is possible. To see this, let A,= \—8a, be the damage at site /. By
PD(A,= \ | <7,._,o-(.+ 1; <T'._,<T'.+ I) we denote the probability to generate a
damaged site for a given initial configuration in a particular update. These
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Table 1. Probabilities PD(A,= 1 | a,_^al+^,a',_^a'l+^}
for the Generation of Damage in the DK Model"

ai-1, ai + 1

00
01
10
11

a ' i - l , Ti + l

00

0

P1

P1

P2

01

P1

0
X
Y

10

P1

X
0
y

1 1

P2
Y
Y
0

a X and Y are defined in Eq. (26).

probabilities are listed in Table I, in which we introduced for brevity the
notation

In general, the probability for generating damage on site i depends on the
previous states of both replicas, i.e. on (<r,_ \ai+\\o'l_l a'i+,); knowledge of
A,_ i and dl+} does not suffice to determine A, at the next time step. Thus
damage spreading itself cannot be seen as an independent process. We may,
however, pose the following question: under which conditions will damage
spread as if it were generated by an independent process? That is, when do
we have

In order to satisfy this condition, any two entries in Table I, that corre-
spond to the same initial damage {/ / , ._ , / ) ,_ ,_ ,} , should be equal. For
example all four initial configurations

have the same initial damage {J,_(, J, + ,} = {1, 1}. In order to satisfy
Eq. (13), the four entries (p2, X, X, p2) must have the same value, i.e. we
must have p2 = X. A similar consideration leads to the condition Y=pt;
that is, we must have
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Note that these are precisely the update rules of the DK process. Using the
definitions (12), we see that the correlations must satisfy

Since the correlation parameters are restricted by Eq. (11), the allowed
range for /?, and p2 in which these conditions can hold is a triangle in the
phase diagram:

To summarize: we have proved that within this triangle we can find
correlations a, /? such that the damage spreading process follows the
dynamical rules of a single DK automaton. Say we have a line in the
(/>i> Pi) plane that lies within this region. For every point (pf, pf) on this
line we can find a, /? values for which DS evolves precisely like a DK
automaton with parameters ( p * , p * ) - Since part of the transition line of
the DK model (from dry to wet phase) lies in the triangle (16), on any tra-
jectory that crosses this part of the phase boundary we will observe a
damage spreading transition precisely at the DP transition and with DP
exponents (provided we chose a, ft according to Eq. (15).) In particular,
this holds for the line p2 = 0> as discovered in Ref. 14; note that for p2 = 0
their choice of correlations, Eq. (10) precisely satisfy Eq. (15).

Outside the triangle (16) it is not possible to find values of a, /? for
which this mapping holds exactly. Needless to say this rules out neither the
existence of DS transitions, nor their being in the DS universality class.

4.2. Results from Comparing Probabilities

Other useful results can be obtained by comparing probability tables
of different pairs of automata. The basic idea is that by increasing (decreasing)
all probabilities in Table I, damage spreading will be more (less) likely.
More precisely, if a pair of DK automata described by parameters pf, p£,
<x*, /?* exhibits damage spreading, we expect that any other pair of
automata with parameters /> , , p2, S., ft satisfying
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exhibits damage spreading as well. Vice versa, if damage heals in a pair of
automata described by/?*, />*, a*, ft*, then for any other pair with/?,, p2,
a, J3 obeying

we expect damage to heal. Although these statements are very plausible, we
were not able to prove them rigorously. However, we performed various
numerical tests which turned out to be consistent with the inequalities
stated above.

Because of these inequalities the boundaries between the three regions
in the phase diagram correspond to extremal correlations a and /?. For
example, if at a point (PI, p2) damage spreads in a model with maximal
correlations amax = min(/>,, p2) and /?max = /?i, then Eq. (17) implies that
damage spreads also for every a and /? in the allowed range (11). This,
however, means that the point ( p \ , p 2 ) belongs to region 1 in the phase
diagram. Therefore the phase boundary of region 1 coincides with the DS
transition line for maximal correlations. Similarly one can use Eq. (18) to
show that the phase boundary between regions 2 and 3 coincides with the
DS transition line for minimal correlations. It turns out (see Fig. 2) that

Fig. 2. Schematic phase diagram, displaying the special lines and points that are referred to
in the text.
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this line lies entirely in the region 2p, + p2 > 2 so that minimal correlations
are well defined (see Appendix B).

Alternatively one can compare the probabilities for generating damage
in a pair of DK automata to the probabilities of generating a wet site in
a single DK automaton. To this end one simply has to use the same
inequalities setting a* = p2 /2 and /?* = pf — p*/1. For example, if pf and
pf represent a point in the wet phase of the DK phase diagram, then for
all pairs of automata parametrized by />,, p2, a, ft and satisfying

damage will spread. On the other hand, if pf and p$ belong to the dry
phase of the DK model then in all pairs of automata with

damage does not spread.
As an illustration of Eq. (19) consider the point M, in Fig. 2: Setting

pf = p\ x0.809 and p* = 0 we obtain the conditions

Using the bounds (11) we find from these inequalities that in the triangle
P\—P2^P* damage spreads with certainty for any a in the allowed range.
In Fig. 2 this triangle is indicated as a shaded region.

4.3. Terminal Points of the Phase Boundaries

We turn now to derive, using the arguments introduced above, a few
exact results concerning the phase boundaries for minimal and maximal
correlations. As explained above, these boundaries are the transition lines
between the damage-spreading phases 1, 2 and 3 described in the Introduc-
tion and shown on 1. In order to make our arguments easier to follow, we
present in Fig. 2 all the lines and special points that are mentioned.

Let us consider first the case of maximal correlations. That is, for every
point (/>,, p2) in the phase diagram we assign a = min(^|, p2) and ft = p\
and look for the boundary ^max between the region in which damage
spreads and the one in which it doesn't. Denote the wet-to-dry transition
line of the DK model by ^wet (see Fig. 2).

We now prove that ^max and ^wet can intersect only at the point
M} = (p\, 0), where ^wet intersects the p, axis. On this axis maximal
correlations correspond to the choice a = p2 = 0 and /? = p t, which also
satisfy the conditions (15), i.e. the damage spreading process can be



For a point (p\,p2) on J>wet these inequalities, when used together with
Eq. (20), imply that damage does not spread. Furthermore, since (22) are
(for p2>0) strict inequalities, Bwet lies inside the no-spread region. The
point M, is on the boundary between this region and a region (containing
the p\>p't axis) in which damage does spread; therefore M{ must lie
on ^max.

We turn now to the phase boundary ^min for minimal correlations,
and show that it terminates at the point M2, where ̂ wet intersects the line
Jzf, given by / j ,+/?2 /2 = 1. First notice that on <£ minimal correlations
correspond to &. = 1 — p{ and ft = 2pl — \. Therefore (see Eq. (15)) the DS
process is equivalent, on &, to a DK model, so that as we move on Z£,
keeping minimal correlations, a DS transition occurs at the point M2 =
(p*,p*), where Jz? intersects ^WET. As before, we show next that at all
points on ^WET wi thp 2 >p* damage doesn't spread; hence ^min must pass
through A/2- To prove the last claim note that the segment of ^wet that lies
above the intersection point is in the region where pt + p2/2> 1 and this
immediately leads (for minimal correlations) to the inequalities
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mapped onto a single DK model. Therefore we know that a DS transition
will occur precisely at pt = p\, so that at all points (p\> p\, p2 = Q) we
must have DS. On the other hand, as we will now show, for maximal
correlations there cannot be DS on any point on ^wet; hence the boundary
^max must go through M\. In order to substantiate the last claim, to see
this, note that (for the region of interest, />, > 1/2) maximal correlations
imply the inequalities

According to Eqs. (20), this implies that on the DK transition line in the
region p{ + p2/2 > 1 damage does not spread. Therefore M2 is the terminal
point of ̂ min.

Having located the endpoints Af, and M2, we now turn to the
opposite end of the lines ^max and ^min. Note that for p{ = 1 the bounds
(11) collapse to S. = p2, /? = !, i.e. maximal and minimal correlations are
identical and hence ^max and ^min meet at some point M3 on the /?, = 1
line. The three special "multicritical" points discussed above determine the
topology of the phase diagram for DS. In order to obtain high precision
quantitative information about the location of the transition lines we per-
formed numerical studies of damage spreading in the DK model.



4.4. Numerical Results

In order to obtain accurate numerical estimates for the critical
parameters of models with absorbing states one usually has to let the
system evolve for extremely long times.(9) Grassberger overcame the dif-
ficulty posed by long transients and obtained good statistics by simulating
n replicas of the same system in parallel, using simple bit manipulations on
computers with unsigned words of length «.< I 3 ) Using this multi-spin coding
method he measured the decay in damage on a one-million site chain,
allowing it to evolve for hundreds of thousands of time steps. Because of
the improved statistics he was able to determine the critical exponents for
damage spreading at a particular transition point with high accuracy.

Another method to determine the critical point efficiently is the so-
called gradient method which was introduced by Zebende and Penna.(10) In
this method a gradient in pi and p2 is arranged along the chain. The values
of the parameters at the two end-points of the chain are chosen to be in dif-
ferent phases, i.e. on different sides of the transition point. This allows the
critical point to be determined by measuring the average location of the
boundary of the active (damaged) cluster.

In the present work we used a combination of multi-spin coding and
the gradient method. In combining these methods, a number of problems
emerged which we solved as follows:

1. In order to measure the damage spreading transition point, one
has to find the first position (approaching from the non-spreading
phase) where damage occurs. Simulating n = 64 lattices in parallel,
this has to be done for each of the 64-63/2 = 2016 pairs of
replicas. To do this one has to set up a 64 x 64 table in order to
keep track of damaged pairs. Moreover, one has to scan the words
bit by bit which makes it impossible to use parallel bit manipula-
tions. The large amount of CPU time needed for this process
usually kills the advantage one gains from the multi-spin encoding.
In order to solve this problem, we used a simplified search algo-
rithm which is based on fast bit operations. The price we pay is
that only «75% of all possible pairs are taken into account.7 We
proved that the error of this method does not bias the measure-
ment of the transition point.

7 In this approximation, a given replica is declared to be damaged at site / if the majority of
the other replicas is in a different state. Instead of keeping track of damaged pairs of replicas,
we recognize only single replicas from where damage originated. This amounts in dropping
statistically 25 % of all possible pairs.
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2. Zebende and Penna started each run with a single damaged seed
located somewhere on the chain. It is not clear whether the choice
of the location influences the results. In order to circumvent this
problem, we used initial conditions with randomly distributed
damage all over the chain. This amounts to half the sites of a pair
of chains being damaged initially. The results did not depend on
the amount of initial damage.

3. The gradient method is a finite-size simulation and therefore
boundary conditions may play an important role. In the work of
Zebende and Penna the boundary conditions can be understood
as dry walls and it is not clear to what extent they affect the
measurements. In order to minimize this effect, we created, on a
chain of 2N sites, a gradient with reflection symmetry, [p\(i) =
Pl(\) + (i-\)SPl and pi(2N-i+\) = pt(i) for i= 1, 2,..., N~\,
keeping p2 = const., and measured the boundary of the damaged
cluster on both sides. Alternatively, the roles of p\ and p2 were
reversed. We expect finite-size effects to be less important for these
periodic boundary conditions.

The phase diagram of the DK automaton, obtained using the multiple
lattice gradient method, is presented in Fig. 1. First, we verified numerically
the prediction that larger correlations correspond to smaller damage and
vice versa. This was done by scanning the (a, (S) space for various points
in the (/?,, p2) plane. Next we determined the DS transition lines for mini-
mal and maximal correlations. Typical gradient values of 1.2-10 "5 were
used for lattice sizes L = 8192 and upwards. A transient period of at least
2L was followed by an averaging period of L time steps. For ( p t , p2) near
the transition lines longer transient times were used. The terminal points of
the phase boundaries were determined with high accuracy. Using a chain
with L= 16384 sites, gradients down to 1.22-10~6 and transients of
231072, we measured the following critical values at these special points:
/?',' = 0.8087(5) (on the/>2 = 0 line); p'2 = 0.3130(5) (on t h e ^ , = 0 line). The
new triple point was located at p? = 0.744(10), p^~ 0.526(10). This was
done without using our analytic result that identified this point as the cross-
ing of <£ with ^wel; the value of pf + p$/2 = 1.007(11) agrees with the
predicted value (of 1) for points on !£.

Measuring the density of damage along the gradient of the chain, we
could estimate the density exponent ft. At the terminal points we found
A = 0.302(30) for p2 = 0 and /? = 0.296(30) on the />, = ! line. We also
measured the exponent at a point ( / > , , p2) = (0.85, 0.35) which lies inside
phase 3. This was done by crossing the DS phase boundary while varying
the correlations <x and ft, yielding the value /? = 0.279(10). All results are in
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fair agreement with the expected density exponent of directed percolation
yS = 0.277(l).'23-24)

5. SUMMARY

We have rules that a most general damage spreading procedure should
satisfy. These rules are most natural: they ensure that the evolution of a
single replica is not affected by the fact that two replicas are evolving
simultaneously; that the range of damage spreading does not exceed the
range of interactions in the original single model and that the two evolving
replicas respect the symmetries of the model. These rules can be cast in a
formal setting, that enables us to study damage spreading in terms of
correlation coefficients between various stochastic binary variables. Thus
we are considering all possible damage spreading procedures and identify
different damage spreading phases in terms of the manner in which this
complete set of procedures behaves. Three possible phases can occur; one
in which damage spreads for all allowed procedures, one in which it does
not spread for any procedure and the third, in which for some procedures
damage spreads while for others it does not.

These ideas were implemented for the Domany-Kinzel automaton, for
which the three phases were identified, using a combination of numerical
and analytic methods. We have shown that in an extended region of the
model's parameter space damage spreading can be mapped onto the evolu-
tion of the DK automaton itself. This observation supports Grassberger's
recent conjecture to the effect that damage spreading is in the directed
percolation universality class. This was also confirmed by numerical tests
(performed in regions where the above mentioned mapping does not hold).

APPENDIX A. GENERATION OF CORRELATED RANDOM
VARIABLES

In this Appendix we explain in detail how correlated random variables
/•„,, r,0 and rn, that govern the evolution of the DK-model, can be
generated. We also prove the allowed ranges for <x and /?, given in Eq. (11).
Finally, we explain the manner in which minimal correlations are given by
the expression presented in Sec. V.

Since in each update r01, rw, and r,, can be either zero or one, there
are eight possible combinations. By nr(t ,,|o,,.n we denote the (positive)
probability to generate the combination \r0i,rlo,rn}. These probabilities
are normalized such that they sum up to one. The random variables /•„,,
/-,„, and /•,! can be generated by taking one uniformly distributed random
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number 0 < z < 1 and selecting one of the eight possible outcomes accord-
ing to the probabilities nrai,rto,ru- The correlation functions between the
random variables can be represented in terms of the n's, for example
n111 = (ro1ro1ro1> and rcuo + 7im = <r0,rlo>. Collecting all identities of
this type, we obtain seven equations:

Together with the normalization these equations determine all probabilities

n ro\' '•]<)• r\\'

Since all n have to be positive, we obtain six inequalities:

For a given choice of the parameters /?,, p2 these inequalities imply restric-
tions on the correlation parameters a, /? and y. The allowed range of these
parameters can be derived as follows. First let us consider the restrictions
on a. Eq. (26) implies that 0^d^p2 whereas Eq. (27) leads to the condi-
tion PI + p2— l ^ a < ^ | . Both of them can be combined by requiring



For a given a in this interval the maximal ranges of ft and y are given in
Eqs. (26)-(27). However, since we do not explicitly use the three-point
correlation parameter y, we are only interested in the maximal range of /?.
This range can be obtained by inserting the extremal values for y into
Eq. (27), that is y = max(0, 2<x — p2) on the l.h.s. and y = a on the r.h.s. Thus
for a given a in the range (28) the corresponding maximal range of ft is:
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In other words, if a and /? satisfy Eqs. (28)-(29), we are able to find some
y such that all probabilities ft , -„ , . , - , „ , , - , , are positive.

APPENDIX B. MAXIMAL AND MINIMAL CORRELATIONS
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which replaces Eq. (29) in the specified triangle. In this inequality a occurs
with a positive sign on the l.h.s. and therefore the case of minimal correla-
tions is well defined:
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